Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein.

Identifieur interne : 002365 ( Main/Exploration ); précédent : 002364; suivant : 002366

Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein.

Auteurs : Olivier Lamotte [France] ; Kevin Gould ; David Lecourieux ; Anabelle Sequeira-Legrand ; Angela Lebrun-Garcia ; Jörg Durner ; Alain Pugin ; David Wendehenne

Source :

RBID : pubmed:15122020

Descripteurs français

English descriptors

Abstract

Nitric oxide (NO) has recently emerged as an important cellular mediator in plant defense responses. However, elucidation of the biochemical mechanisms by which NO participates in this signaling pathway is still in its infancy. We previously demonstrated that cryptogein, an elicitor of tobacco defense responses, triggers a NO burst within minutes in epidermal sections from tobacco leaves (Nicotiana tabacum cv Xanthi). Here, we investigate the signaling events that mediate NO production, and analyze NO signaling activities in the cryptogein transduction pathway. Using flow cytometry and spectrofluorometry, we observed that cryptogein-induced NO production in tobacco cell suspensions is sensitive to nitric oxide synthase inhibitors and may be catalyzed by variant P, a recently identified pathogen-inducible plant nitric oxide synthase. NO synthesis is tightly regulated by a signaling cascade involving Ca2+ influx and phosphorylation events. Using tobacco cells constitutively expressing the Ca2+ reporter apoaequorin in the cytosol, we have shown that NO participates in the cryptogein-mediated elevation of cytosolic free Ca2+ through the mobilization of Ca2+ from intracellular stores. The NO donor diethylamine NONOate promoted an increase in cytosolic free Ca2+ concentration, which was sensitive to intracellular Ca2+ channel inhibitors. Moreover, NO appears to be involved in the pathway(s) leading to the accumulation of transcripts encoding the heat shock protein TLHS-1, the ethylene-forming enzyme cEFE-26, and cell death. In contrast, NO does not act upstream of the elicitor-induced activation of mitogen-activated protein kinase, the opening of anion channels, nor expression of GST, LOX-1, PAL, and PR-3 genes. Collectively, our data indicate that NO is intimately involved in the signal transduction processes leading to cryptogein-induced defense responses.

DOI: 10.1104/pp.104.038968
PubMed: 15122020
PubMed Central: PMC429403


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein.</title>
<author>
<name sortKey="Lamotte, Olivier" sort="Lamotte, Olivier" uniqKey="Lamotte O" first="Olivier" last="Lamotte">Olivier Lamotte</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unité Mixte de Recherche 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, Institut National de la Recherche Agronomique, BP 86510, 21065 Dijon, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Unité Mixte de Recherche 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, Institut National de la Recherche Agronomique, BP 86510, 21065 Dijon</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Bourgogne-Franche-Comté</region>
<region type="old region" nuts="2">Bourgogne</region>
<settlement type="city">Dijon</settlement>
</placeName>
<orgName type="university">Université de Bourgogne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gould, Kevin" sort="Gould, Kevin" uniqKey="Gould K" first="Kevin" last="Gould">Kevin Gould</name>
</author>
<author>
<name sortKey="Lecourieux, David" sort="Lecourieux, David" uniqKey="Lecourieux D" first="David" last="Lecourieux">David Lecourieux</name>
</author>
<author>
<name sortKey="Sequeira Legrand, Anabelle" sort="Sequeira Legrand, Anabelle" uniqKey="Sequeira Legrand A" first="Anabelle" last="Sequeira-Legrand">Anabelle Sequeira-Legrand</name>
</author>
<author>
<name sortKey="Lebrun Garcia, Angela" sort="Lebrun Garcia, Angela" uniqKey="Lebrun Garcia A" first="Angela" last="Lebrun-Garcia">Angela Lebrun-Garcia</name>
</author>
<author>
<name sortKey="Durner, Jorg" sort="Durner, Jorg" uniqKey="Durner J" first="Jörg" last="Durner">Jörg Durner</name>
</author>
<author>
<name sortKey="Pugin, Alain" sort="Pugin, Alain" uniqKey="Pugin A" first="Alain" last="Pugin">Alain Pugin</name>
</author>
<author>
<name sortKey="Wendehenne, David" sort="Wendehenne, David" uniqKey="Wendehenne D" first="David" last="Wendehenne">David Wendehenne</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15122020</idno>
<idno type="pmid">15122020</idno>
<idno type="doi">10.1104/pp.104.038968</idno>
<idno type="pmc">PMC429403</idno>
<idno type="wicri:Area/Main/Corpus">002391</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002391</idno>
<idno type="wicri:Area/Main/Curation">002391</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002391</idno>
<idno type="wicri:Area/Main/Exploration">002391</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein.</title>
<author>
<name sortKey="Lamotte, Olivier" sort="Lamotte, Olivier" uniqKey="Lamotte O" first="Olivier" last="Lamotte">Olivier Lamotte</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unité Mixte de Recherche 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, Institut National de la Recherche Agronomique, BP 86510, 21065 Dijon, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Unité Mixte de Recherche 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, Institut National de la Recherche Agronomique, BP 86510, 21065 Dijon</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Bourgogne-Franche-Comté</region>
<region type="old region" nuts="2">Bourgogne</region>
<settlement type="city">Dijon</settlement>
</placeName>
<orgName type="university">Université de Bourgogne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gould, Kevin" sort="Gould, Kevin" uniqKey="Gould K" first="Kevin" last="Gould">Kevin Gould</name>
</author>
<author>
<name sortKey="Lecourieux, David" sort="Lecourieux, David" uniqKey="Lecourieux D" first="David" last="Lecourieux">David Lecourieux</name>
</author>
<author>
<name sortKey="Sequeira Legrand, Anabelle" sort="Sequeira Legrand, Anabelle" uniqKey="Sequeira Legrand A" first="Anabelle" last="Sequeira-Legrand">Anabelle Sequeira-Legrand</name>
</author>
<author>
<name sortKey="Lebrun Garcia, Angela" sort="Lebrun Garcia, Angela" uniqKey="Lebrun Garcia A" first="Angela" last="Lebrun-Garcia">Angela Lebrun-Garcia</name>
</author>
<author>
<name sortKey="Durner, Jorg" sort="Durner, Jorg" uniqKey="Durner J" first="Jörg" last="Durner">Jörg Durner</name>
</author>
<author>
<name sortKey="Pugin, Alain" sort="Pugin, Alain" uniqKey="Pugin A" first="Alain" last="Pugin">Alain Pugin</name>
</author>
<author>
<name sortKey="Wendehenne, David" sort="Wendehenne, David" uniqKey="Wendehenne D" first="David" last="Wendehenne">David Wendehenne</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algal Proteins (pharmacology)</term>
<term>Calcium (metabolism)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Flow Cytometry (MeSH)</term>
<term>Fungal Proteins (MeSH)</term>
<term>Immunity, Innate (drug effects)</term>
<term>Immunity, Innate (physiology)</term>
<term>Nitric Oxide (metabolism)</term>
<term>Nitric Oxide Synthase (antagonists & inhibitors)</term>
<term>Nitric Oxide Synthase (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Signal Transduction (drug effects)</term>
<term>Signal Transduction (physiology)</term>
<term>Spectrometry, Fluorescence (MeSH)</term>
<term>Tobacco (cytology)</term>
<term>Tobacco (drug effects)</term>
<term>Tobacco (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Calcium (métabolisme)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Cytométrie en flux (MeSH)</term>
<term>Immunité innée (effets des médicaments et des substances chimiques)</term>
<term>Immunité innée (physiologie)</term>
<term>Monoxyde d'azote (métabolisme)</term>
<term>Nitric oxide synthase (antagonistes et inhibiteurs)</term>
<term>Nitric oxide synthase (métabolisme)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protéines d'algue (pharmacologie)</term>
<term>Protéines fongiques (MeSH)</term>
<term>Spectrométrie de fluorescence (MeSH)</term>
<term>Tabac (cytologie)</term>
<term>Tabac (effets des médicaments et des substances chimiques)</term>
<term>Tabac (métabolisme)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Nitric Oxide Synthase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calcium</term>
<term>Nitric Oxide</term>
<term>Nitric Oxide Synthase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Algal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Nitric oxide synthase</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Immunity, Innate</term>
<term>Signal Transduction</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Immunité innée</term>
<term>Tabac</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Calcium</term>
<term>Monoxyde d'azote</term>
<term>Nitric oxide synthase</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Protéines d'algue</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Immunité innée</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Immunity, Innate</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cells, Cultured</term>
<term>Flow Cytometry</term>
<term>Fungal Proteins</term>
<term>Phosphorylation</term>
<term>Spectrometry, Fluorescence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules cultivées</term>
<term>Cytométrie en flux</term>
<term>Phosphorylation</term>
<term>Protéines fongiques</term>
<term>Spectrométrie de fluorescence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nitric oxide (NO) has recently emerged as an important cellular mediator in plant defense responses. However, elucidation of the biochemical mechanisms by which NO participates in this signaling pathway is still in its infancy. We previously demonstrated that cryptogein, an elicitor of tobacco defense responses, triggers a NO burst within minutes in epidermal sections from tobacco leaves (Nicotiana tabacum cv Xanthi). Here, we investigate the signaling events that mediate NO production, and analyze NO signaling activities in the cryptogein transduction pathway. Using flow cytometry and spectrofluorometry, we observed that cryptogein-induced NO production in tobacco cell suspensions is sensitive to nitric oxide synthase inhibitors and may be catalyzed by variant P, a recently identified pathogen-inducible plant nitric oxide synthase. NO synthesis is tightly regulated by a signaling cascade involving Ca2+ influx and phosphorylation events. Using tobacco cells constitutively expressing the Ca2+ reporter apoaequorin in the cytosol, we have shown that NO participates in the cryptogein-mediated elevation of cytosolic free Ca2+ through the mobilization of Ca2+ from intracellular stores. The NO donor diethylamine NONOate promoted an increase in cytosolic free Ca2+ concentration, which was sensitive to intracellular Ca2+ channel inhibitors. Moreover, NO appears to be involved in the pathway(s) leading to the accumulation of transcripts encoding the heat shock protein TLHS-1, the ethylene-forming enzyme cEFE-26, and cell death. In contrast, NO does not act upstream of the elicitor-induced activation of mitogen-activated protein kinase, the opening of anion channels, nor expression of GST, LOX-1, PAL, and PR-3 genes. Collectively, our data indicate that NO is intimately involved in the signal transduction processes leading to cryptogein-induced defense responses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15122020</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>10</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>135</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2004</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein.</ArticleTitle>
<Pagination>
<MedlinePgn>516-29</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Nitric oxide (NO) has recently emerged as an important cellular mediator in plant defense responses. However, elucidation of the biochemical mechanisms by which NO participates in this signaling pathway is still in its infancy. We previously demonstrated that cryptogein, an elicitor of tobacco defense responses, triggers a NO burst within minutes in epidermal sections from tobacco leaves (Nicotiana tabacum cv Xanthi). Here, we investigate the signaling events that mediate NO production, and analyze NO signaling activities in the cryptogein transduction pathway. Using flow cytometry and spectrofluorometry, we observed that cryptogein-induced NO production in tobacco cell suspensions is sensitive to nitric oxide synthase inhibitors and may be catalyzed by variant P, a recently identified pathogen-inducible plant nitric oxide synthase. NO synthesis is tightly regulated by a signaling cascade involving Ca2+ influx and phosphorylation events. Using tobacco cells constitutively expressing the Ca2+ reporter apoaequorin in the cytosol, we have shown that NO participates in the cryptogein-mediated elevation of cytosolic free Ca2+ through the mobilization of Ca2+ from intracellular stores. The NO donor diethylamine NONOate promoted an increase in cytosolic free Ca2+ concentration, which was sensitive to intracellular Ca2+ channel inhibitors. Moreover, NO appears to be involved in the pathway(s) leading to the accumulation of transcripts encoding the heat shock protein TLHS-1, the ethylene-forming enzyme cEFE-26, and cell death. In contrast, NO does not act upstream of the elicitor-induced activation of mitogen-activated protein kinase, the opening of anion channels, nor expression of GST, LOX-1, PAL, and PR-3 genes. Collectively, our data indicate that NO is intimately involved in the signal transduction processes leading to cryptogein-induced defense responses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lamotte</LastName>
<ForeName>Olivier</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Unité Mixte de Recherche 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, Institut National de la Recherche Agronomique, BP 86510, 21065 Dijon, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gould</LastName>
<ForeName>Kevin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lecourieux</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sequeira-Legrand</LastName>
<ForeName>Anabelle</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lebrun-Garcia</LastName>
<ForeName>Angela</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Durner</LastName>
<ForeName>Jörg</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pugin</LastName>
<ForeName>Alain</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wendehenne</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>04</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020418">Algal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C061032">cryptogein protein, Phytophthora cryptogea</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>31C4KY9ESH</RegistryNumber>
<NameOfSubstance UI="D009569">Nitric Oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.13.39</RegistryNumber>
<NameOfSubstance UI="D019001">Nitric Oxide Synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020418" MajorTopicYN="N">Algal Proteins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005434" MajorTopicYN="N">Flow Cytometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009569" MajorTopicYN="N">Nitric Oxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019001" MajorTopicYN="N">Nitric Oxide Synthase</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013050" MajorTopicYN="N">Spectrometry, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15122020</ArticleId>
<ArticleId IdType="doi">10.1104/pp.104.038968</ArticleId>
<ArticleId IdType="pii">pp.104.038968</ArticleId>
<ArticleId IdType="pmc">PMC429403</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2002 Jul;7(7):293-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2000 Oct 29;355(1402):1477-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11128001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Sep 21;106(6):675-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11572774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Jun;16(6):553-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12795381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Nov;109(3):1025-1031</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 1998 Jul 1;70(13):2446-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9666719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6326095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11606758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Jan 9;279(5348):234-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9422697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Sep;15(6):773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9807816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 1998 Feb;10(1):16-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9523105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jul;31(2):137-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12121444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Feb;125(2):564-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 1998 Oct 31;8(5):594-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9856347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2627-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Aug;23(3):339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10929127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8849-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10922045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Apr 29;269(17):12645-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7513692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16314-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Feb 16;271(7):3699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8631983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 May 16;113(4):469-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12757708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1995 Jan-Feb;8(1):177-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7772800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2002 May;962:415-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12076992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Aug 6;394(6693):585-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11116-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12949257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Jan;210(2):215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10664127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Sep;130(1):487-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1937-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Oct;215(6):914-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12355151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 1998 Aug;1(4):305-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10066609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2002 Oct 15;309(2):173-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12413448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):675-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9435251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Mar 2;491(3):227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11240132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2003 Nov;197(2):284-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14502568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Apr;6(4):177-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11286923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 3;274(49):34699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10574936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Sep;215(5):708-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10328-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Aug;13(8):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10939253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Dec;130(4):2177-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Aging. 2002 Sep-Oct;23(5):861-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12392791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Mar;43(3):290-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11917083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 May 5;268(5211):735-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7732384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jan 4;277(1):47-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11641405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Sep;23(6):817-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10998192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Dec;24(5):667-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11123805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Sep;10(9):1571-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Feb;95(2):486-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Apr;53(370):875-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11912230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Mar;25(5):529-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11309143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Nov;9(11):2077-2091</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12237354</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Bourgogne</li>
<li>Bourgogne-Franche-Comté</li>
</region>
<settlement>
<li>Dijon</li>
</settlement>
<orgName>
<li>Université de Bourgogne</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Durner, Jorg" sort="Durner, Jorg" uniqKey="Durner J" first="Jörg" last="Durner">Jörg Durner</name>
<name sortKey="Gould, Kevin" sort="Gould, Kevin" uniqKey="Gould K" first="Kevin" last="Gould">Kevin Gould</name>
<name sortKey="Lebrun Garcia, Angela" sort="Lebrun Garcia, Angela" uniqKey="Lebrun Garcia A" first="Angela" last="Lebrun-Garcia">Angela Lebrun-Garcia</name>
<name sortKey="Lecourieux, David" sort="Lecourieux, David" uniqKey="Lecourieux D" first="David" last="Lecourieux">David Lecourieux</name>
<name sortKey="Pugin, Alain" sort="Pugin, Alain" uniqKey="Pugin A" first="Alain" last="Pugin">Alain Pugin</name>
<name sortKey="Sequeira Legrand, Anabelle" sort="Sequeira Legrand, Anabelle" uniqKey="Sequeira Legrand A" first="Anabelle" last="Sequeira-Legrand">Anabelle Sequeira-Legrand</name>
<name sortKey="Wendehenne, David" sort="Wendehenne, David" uniqKey="Wendehenne D" first="David" last="Wendehenne">David Wendehenne</name>
</noCountry>
<country name="France">
<region name="Bourgogne-Franche-Comté">
<name sortKey="Lamotte, Olivier" sort="Lamotte, Olivier" uniqKey="Lamotte O" first="Olivier" last="Lamotte">Olivier Lamotte</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002365 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002365 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15122020
   |texte=   Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15122020" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024